
Week 6 - Wednesday



 What did we talk about last time?
 User interaction design
 Swing







 Design principles favor certain characteristics to make a design better
 SAC principles are three general interaction design principles
 Simplicity
 Simple designs are better
 Lots of options are confusing for the user
 It's better to make commonly used options easy and require a little more work for 

unusual options
 Accessibility
 Designs that can be used be more people are better
 Considerations: color blindness, things too small to see or interact with

 Consistency
 Designs that present data in similar ways are better
 Example: use consistent navigation controls



 CAP principles are focused on appearance
 Contrast
 Designs that make different things obviously different are better
 Example: italics and bold
 Example: font size to distinguish headings from text

 Alignment
 Designs that line up on a grid are better
 Indentation is useful

 Proximity
 Designs that group related things together are better



 FeVER principles are about behavior
 Feedback
 Designs that acknowledge user actions are better
 Otherwise, how do you know if what you're doing has an effect?

 Visibility
 Designs that display their state and available operations are better
 Are we in Arm Bomb or Disarm Bomb mode?

 Error Prevention and Recovery
 Designs that prevent user errors and allow error recovery are better
 Prevention example: disable buttons that shouldn't be pressed
 Recovery example: allow undo or ask "Are you sure?" before doing something 

dangerous







 Artists divide colors into
 Primary: red, blue, yellow
 Secondary: mixes of primaries, orange, green, and purple
 Tertiary: combinations of primaries and secondaries

 Complementary colors are across from each other on the 
color wheel, with strong contrast

 Analogous colors are next to each other on the color wheel



 Warm colors like red, yellow, and orange are on one side of the fence
 Red has associations with strong archetypes, like hatred, passion, and fire
 Yellow is tied to happiness and sunshine

 Cool colors like green, blue, and purple are on the other
 Blue is cold and serene and trustworthy
 Green is associated with nature, the environment, healing, and money
 Purple is connected to royalty and femininity

 Neutral colors like gray and brown do not evoke much emotion
 Black can run the range from authority to death to mystery to elegance
 White can show purity, innocence, cleanliness, winter

 Colors evoke feelings in people, but there is so much variation



 A white background is the standard for readability
 Black backgrounds are often used to give a more 

exciting, youth-oriented, or "cool" feel
 Background colors are important since a single color 

can look different on different backgrounds



 Corporate branding is heavily tied to recognizable colors

 T-Mobile has even sued other companies for using magenta 
(unsuccessfully, it seems)



Graphic from Wired 
magazine 2003



 Google Lighthouse can check a website for contrast and other 
issues
 It's a tool built into Chrome

 Toptal is a website that lets you see what webpages look like 
for people with certain kinds of color blindness
 https://www.toptal.com/designers/colorfilter

https://www.toptal.com/designers/colorfilter




 Serif fonts have little pointy bits

F
 Sans serif fonts do not

F



 Make sure it is readable wherever it will display (books might 
be different from on screen)

 Read your content out loud in the font you pick to test 
readability

 Consider what audience you're trying to appeal to
 What is the setting where your text will appear?
 The process is subjective; there may not be a solution that 

pleases everyone



 Sans serif is usually considered more readable on screens
 Avoid ALL CAPS
 For headings, down style (capitalizing only the first word and 

proper nouns) is more readable than up style (capitalizing 
every major word)



 Using lots of fonts is amateurish and looks like a ransom note
 Using a single font is reasonable, especially for a webpage
 Some designers prefer to pair fonts, using two distinct fonts, 

often one for headings and the other for text
 An alternative is to use two very different weights of the same font

 The fonts should be different enough that they are not confused
 Ideally from different families

 Serif for headings and sans serif for body is a good stand by
 Sometimes the headings will be images of text rather than text



 Contrast is key
 Easy with black text on white background or vice versa
 If you are using colored fonts or backgrounds, how much contrast is there if you were to 

change to grayscale?
 Size
 Don't go too small!
 10pt or 12px is the smallest your fonts should be

 Hierarchy
 Use different fonts or weights or styles for title, heading, and body text
 Be consistent!

 Negative space is important
 Lets the eye rest
 Keeps the content from running together



 Alignment and proximity
 Balance
 Consistency and repetition
 Contrast and whitespace
 Gestalt
 Golden ratios



 All the images and text in your layout should follow some plan for 
alignment
 Horizontal
 Vertical
 Edges aligned
 Everything centered
 "Visual" alignment

 Unaligned items usually look sloppy
 It's possible to break alignment for a dramatic effect
 Items being close together suggests that they relate to each other



 Evenly distribute text and graphics
 Symmetrical balance divides things down the 

middle
 Asymmetrical balance leans to one side to create 

emphasis or interest
 Visual center is not always the center of the page

 In radial balance, elements radiate from the 
middle

 The rule of thirds suggests that a design can be 
made interesting by dividing the space into thirds 
such that important elements fall into only one of 
the three

Symmetrical

Asymmetrical

Radial



 Repetition is often a good thing in design
 Use the same styles and fonts consistently for top level 

headings, body text, quotes, etc.
 Use consistent layout for navigation bars and layout
 Page numbers or copyright notices should be in the same 

place on each page
 Repetition is comforting to readers
 They will often complain if there is any change, even if the new 

design is an improvement



 Gestalt is the idea that the whole is different than 
the sum of its parts

 Each individual part of a design can seem good on 
its own, but it might not fit together right

 Think about figure and ground
 Things that are incomplete are perceived as whole
 Many of the guidelines about grouping similar 

items together or making things with similar 
functions look similar come from gestalt 
psychology



 The golden ratio (or mean) is φ (phi), 
approximately 1.61803398874989 and even 
more approximately 5:3
 This value occurs in the closed-form solution of 

Fibonacci
 This ratio occurs in nature and is considered to 

look pleasing in art and design
 It comes from the relationship a + b:a as a:b
 This ratio is a good guideline for dividing up 

columns or organizing other layout





 Software engineering design is designing programs, sub-
systems, and their constituent parts

 Product design and interface design specifies the external 
features of a product

 Engineering design specifies the internal features
 Making it work

 When designing, it can be useful to make many different models 
showing different views of the system
 Class diagrams breaking the system into its parts
 State diagrams showing the states it can be in
 Diagrams showing hardware and software interactions



 A number of approaches can be used to avoid design defects
 Design principles: Using a list of good principles helps you 

make good choices
 Design notations: Using good notations (often UML 

diagrams) helps designs be complete and consistent
 Design processes: Using established processes for designs 

helps avoid mistakes
 Design patterns: Using patterns, models designed to be 

imitated, reuses solutions that have worked in the past (and 
make design easier)



 The previous slide was about preventing design defects
 To detect and remove design defects, an effective technique is 

active review
 In an active review, experts answer questions about parts of the 

design
 Active reviews have three phases:
 Preparation: Designers choose parts of the design they aren't happy with, 

choose experts to examine each part, and prepare questions for the 
experts

 Performance: Reviewers get the design and answer the questions
 Complete: Designers read the responses and update their design



 As with interface design, there are many software design principles that 
can help us evaluate the quality of a design

 Some important design principles are:
 Simplicity
 Small modules
 Information hiding
 Minimize module coupling
 Maximize module cohesion

 In this context, module means any meaningful program unit
 For OOP, classes or methods are usually considered modules
 The definition is intentionally vague to cover many different languages
 It does not mean Java modules (an organization level above packages in Java 9+)



 As with interface design, simpler designs are better
 What is simplicity?
 Fewer lines of code
 Fewer control structures
 Fewer connections between different parts
 Fewer computations with different kinds of objects

 A good rule of thumb is which design is easiest to understand
 Simplicity is a good goal, but some important algorithms in computer 

science are necessarily complex

Everything should be made as simple as possible, but not simpler.
-Attributed to Albert Einstein, who probably did not say it quite like that



 Designs with small modules are better
 Smaller modules are easier to read, to write, to understand, 

and to test
 Miscellaneous guidelines:
 Classes should have no more than a dozen operations (methods)
 Classes should be no more than 500 lines long
 Operations should be no more than 50 lines long
 I have heard that you should be able to cover a method with your 

hand
 Of course, it is often impossible to follow these guidelines



 Each module should shield the internal details of its operation from other 
modules

 Declare variables with the smallest scope possible
 Use private (and protected) keywords in OOP languages to hide data 

(and even methods) from outside classes
 Advantages of information hiding:
 Modules that hide their internals can change them without affecting other things
 Modules that hide information are easier to understand, test, and reuse because they 

stand on their own
 Modules that hide information are more secure and less likely to be affected by outside 

errors
 This is why we use mutators and accessors instead of making members public



 Module coupling is the amount of connectivity between two modules
 Modules can be coupled in the following ways:
 One class is an ancestor of another class
 One class has a member whose type is another class
 One class has an operation (method) parameter whose type is another class
 One operation calls an operation on another class

 If there two modules have many of these couplings, we say that they are 
strongly coupled or tightly coupled

 When modules are strongly coupled, it's hard to use them independently 
and hard to change one without causing problems in the other

 Try to write classes to be as general as possible instead of tied to a specific 
problem or set of classes

 Using interfaces helps



 Module cohesion is how much the stuff in the module is 
related to the other stuff in the module

 We want everything in a class to be closely related
 It's best if a class keeps the smallest amount of information 

possible about other classes
 More module cohesion usually leads to looser module 

coupling
 Sometimes a module being hard to name suggests that its 

data or operations are not cohesive



 The design process is a microcosm of 
the larger software development 
process

 The steps are analyzing the problem, 
proposing solutions (and looking up 
existing solutions to similar problems), 
and evaluating the solutions (perhaps 
combining different solutions) until a 
design is selected

Analyze Design 
Problem

Design 
Problem

Generate and 
Improve Candidate 

Designs

Evaluate Candidate 
Designs

Select Design

Design 
Specification

Adequate

Inadequate

Finalize Design



 Architectural design is specifying a 
program's major components

 Architectural design is often modeled 
with a box-and-line diagram (also 
called a block diagram)
 Components are boxes
 Relationships or interactions between 

them are lines
 Unlike UML diagrams, box-and-line 

diagrams have no standards
 Draw them in a way that communicates 

your design



 Architectural styles are patterns that can be followed for 
architectures
 Model-view-controller
 Layered architecture
 Repository architecture
 Client-server architecture
 Pipe and filter architecture

 Architectural styles are the high-level analog of design patterns
 These styles can be used for parts of your design or combined into 

hybrid styles



 The Model-View-Controller (MVC) 
style fits many kinds of web or GUI 
interactions

 The model contains the data that is 
being represented, often in a database

 The view is how the data is displayed
 The controller is code that updates the 

model and selects which view to use
 The Java Swing GUI system is built 

around MVC
 Good: greater independence between 

data and how it's represented
 Bad: additional complexity for simple 

models



 Organize the system into layers
 Each layer provides services to layers 

above it, with the lowest layer being 
the most fundamental operations

 Layered styles work well when adding 
functionality on top of existing 
systems

 Good: entire layers can be replaced as 
long as the interfaces are the same

 Bad: it's hard to cleanly separate 
layers, and performance sometimes 
suffers



 If many components share a lot of data, a repository style might be appropriate
 Components interact by updating the repository
 This pattern is ideal when there is a lot of data stored for a long time
 Good: components can be independent
 Bad: the repository is a single point of failure



 Client-Server styles are used for distributed systems
 Each server provides a separate service, and clients access those services
 Good: work is distributed, and clients can access just what they need
 Bad: each service is a single point of failure, and performance might be 

unpredictable



 In the pipe and filter style, data is passed from one component to the next
 Each component transforms input into output
 Good: easy to understand, matches business applications, and allows for 

component reuse
 Bad: each component has to agree on formatting with its inputs and 

outputs



 Non-functional requirements usually relate to properties of the whole 
system

 They must be planned for at the architectural level
 Strategies for architecture designers meeting performance requirements:
 Use budgets: Each component is assigned a limit on time, space, or energy so 

that everything stays within the overall limit
 Choose appropriate styles: Layered architectures with a lot of layers can be 

slow
 Modify styles: Basic styles can be changed a little, for example, allowing a low-

level layer to talk directly to a high-level one
 Emphasize simplicity: Simple versions of components might be faster and use 

less memory than full-featured ones
 Minimize synchronous interactions: Synchronous interactions are ones where 

components have to wait for answers from other components



 Reliability is the probability that a product will behave as it should under 
normal conditions for a given period of time

 Like performance, it must be planned for at the architectural level
 Strategies for architecture designers meeting reliability requirements:
 Choose appropriate styles: For example, client-server is very reliable, as long as 

the server is reliable
 Modify styles: A client server model could add redundant servers
 Control component interactions: Interactions between components should 

only happen through explicit interfaces
 Handle exceptions: Plan how exceptions will be handled at the architectural 

level so that it's clear what parts of the system are responsible for recovering 
from which errors

 Monitor system health: Build in a component to check to see if other 
components have failed







 Detailed design
 Design patterns



 Keep reading Chapter 7: Software Engineering Design for 
Monday

 Keep working on the draft of Project 2
 Due Friday of next week
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