
Week 6 - Wednesday



 What did we talk about last time?
 User interaction design
 Swing







 Design principles favor certain characteristics to make a design better
 SAC principles are three general interaction design principles
 Simplicity
 Simple designs are better
 Lots of options are confusing for the user
 It's better to make commonly used options easy and require a little more work for 

unusual options
 Accessibility
 Designs that can be used be more people are better
 Considerations: color blindness, things too small to see or interact with

 Consistency
 Designs that present data in similar ways are better
 Example: use consistent navigation controls



 CAP principles are focused on appearance
 Contrast
 Designs that make different things obviously different are better
 Example: italics and bold
 Example: font size to distinguish headings from text

 Alignment
 Designs that line up on a grid are better
 Indentation is useful

 Proximity
 Designs that group related things together are better



 FeVER principles are about behavior
 Feedback
 Designs that acknowledge user actions are better
 Otherwise, how do you know if what you're doing has an effect?

 Visibility
 Designs that display their state and available operations are better
 Are we in Arm Bomb or Disarm Bomb mode?

 Error Prevention and Recovery
 Designs that prevent user errors and allow error recovery are better
 Prevention example: disable buttons that shouldn't be pressed
 Recovery example: allow undo or ask "Are you sure?" before doing something 

dangerous







 Artists divide colors into
 Primary: red, blue, yellow
 Secondary: mixes of primaries, orange, green, and purple
 Tertiary: combinations of primaries and secondaries

 Complementary colors are across from each other on the 
color wheel, with strong contrast

 Analogous colors are next to each other on the color wheel



 Warm colors like red, yellow, and orange are on one side of the fence
 Red has associations with strong archetypes, like hatred, passion, and fire
 Yellow is tied to happiness and sunshine

 Cool colors like green, blue, and purple are on the other
 Blue is cold and serene and trustworthy
 Green is associated with nature, the environment, healing, and money
 Purple is connected to royalty and femininity

 Neutral colors like gray and brown do not evoke much emotion
 Black can run the range from authority to death to mystery to elegance
 White can show purity, innocence, cleanliness, winter

 Colors evoke feelings in people, but there is so much variation



 A white background is the standard for readability
 Black backgrounds are often used to give a more 

exciting, youth-oriented, or "cool" feel
 Background colors are important since a single color 

can look different on different backgrounds



 Corporate branding is heavily tied to recognizable colors

 T-Mobile has even sued other companies for using magenta 
(unsuccessfully, it seems)



Graphic from Wired 
magazine 2003



 Google Lighthouse can check a website for contrast and other 
issues
 It's a tool built into Chrome

 Toptal is a website that lets you see what webpages look like 
for people with certain kinds of color blindness
 https://www.toptal.com/designers/colorfilter

https://www.toptal.com/designers/colorfilter




 Serif fonts have little pointy bits

F
 Sans serif fonts do not

F



 Make sure it is readable wherever it will display (books might 
be different from on screen)

 Read your content out loud in the font you pick to test 
readability

 Consider what audience you're trying to appeal to
 What is the setting where your text will appear?
 The process is subjective; there may not be a solution that 

pleases everyone



 Sans serif is usually considered more readable on screens
 Avoid ALL CAPS
 For headings, down style (capitalizing only the first word and 

proper nouns) is more readable than up style (capitalizing 
every major word)



 Using lots of fonts is amateurish and looks like a ransom note
 Using a single font is reasonable, especially for a webpage
 Some designers prefer to pair fonts, using two distinct fonts, 

often one for headings and the other for text
 An alternative is to use two very different weights of the same font

 The fonts should be different enough that they are not confused
 Ideally from different families

 Serif for headings and sans serif for body is a good stand by
 Sometimes the headings will be images of text rather than text



 Contrast is key
 Easy with black text on white background or vice versa
 If you are using colored fonts or backgrounds, how much contrast is there if you were to 

change to grayscale?
 Size
 Don't go too small!
 10pt or 12px is the smallest your fonts should be

 Hierarchy
 Use different fonts or weights or styles for title, heading, and body text
 Be consistent!

 Negative space is important
 Lets the eye rest
 Keeps the content from running together



 Alignment and proximity
 Balance
 Consistency and repetition
 Contrast and whitespace
 Gestalt
 Golden ratios



 All the images and text in your layout should follow some plan for 
alignment
 Horizontal
 Vertical
 Edges aligned
 Everything centered
 "Visual" alignment

 Unaligned items usually look sloppy
 It's possible to break alignment for a dramatic effect
 Items being close together suggests that they relate to each other



 Evenly distribute text and graphics
 Symmetrical balance divides things down the 

middle
 Asymmetrical balance leans to one side to create 

emphasis or interest
 Visual center is not always the center of the page

 In radial balance, elements radiate from the 
middle

 The rule of thirds suggests that a design can be 
made interesting by dividing the space into thirds 
such that important elements fall into only one of 
the three

Symmetrical

Asymmetrical

Radial



 Repetition is often a good thing in design
 Use the same styles and fonts consistently for top level 

headings, body text, quotes, etc.
 Use consistent layout for navigation bars and layout
 Page numbers or copyright notices should be in the same 

place on each page
 Repetition is comforting to readers
 They will often complain if there is any change, even if the new 

design is an improvement



 Gestalt is the idea that the whole is different than 
the sum of its parts

 Each individual part of a design can seem good on 
its own, but it might not fit together right

 Think about figure and ground
 Things that are incomplete are perceived as whole
 Many of the guidelines about grouping similar 

items together or making things with similar 
functions look similar come from gestalt 
psychology



 The golden ratio (or mean) is φ (phi), 
approximately 1.61803398874989 and even 
more approximately 5:3
 This value occurs in the closed-form solution of 

Fibonacci
 This ratio occurs in nature and is considered to 

look pleasing in art and design
 It comes from the relationship a + b:a as a:b
 This ratio is a good guideline for dividing up 

columns or organizing other layout





 Software engineering design is designing programs, sub-
systems, and their constituent parts

 Product design and interface design specifies the external 
features of a product

 Engineering design specifies the internal features
 Making it work

 When designing, it can be useful to make many different models 
showing different views of the system
 Class diagrams breaking the system into its parts
 State diagrams showing the states it can be in
 Diagrams showing hardware and software interactions



 A number of approaches can be used to avoid design defects
 Design principles: Using a list of good principles helps you 

make good choices
 Design notations: Using good notations (often UML 

diagrams) helps designs be complete and consistent
 Design processes: Using established processes for designs 

helps avoid mistakes
 Design patterns: Using patterns, models designed to be 

imitated, reuses solutions that have worked in the past (and 
make design easier)



 The previous slide was about preventing design defects
 To detect and remove design defects, an effective technique is 

active review
 In an active review, experts answer questions about parts of the 

design
 Active reviews have three phases:
 Preparation: Designers choose parts of the design they aren't happy with, 

choose experts to examine each part, and prepare questions for the 
experts

 Performance: Reviewers get the design and answer the questions
 Complete: Designers read the responses and update their design



 As with interface design, there are many software design principles that 
can help us evaluate the quality of a design

 Some important design principles are:
 Simplicity
 Small modules
 Information hiding
 Minimize module coupling
 Maximize module cohesion

 In this context, module means any meaningful program unit
 For OOP, classes or methods are usually considered modules
 The definition is intentionally vague to cover many different languages
 It does not mean Java modules (an organization level above packages in Java 9+)



 As with interface design, simpler designs are better
 What is simplicity?
 Fewer lines of code
 Fewer control structures
 Fewer connections between different parts
 Fewer computations with different kinds of objects

 A good rule of thumb is which design is easiest to understand
 Simplicity is a good goal, but some important algorithms in computer 

science are necessarily complex

Everything should be made as simple as possible, but not simpler.
-Attributed to Albert Einstein, who probably did not say it quite like that



 Designs with small modules are better
 Smaller modules are easier to read, to write, to understand, 

and to test
 Miscellaneous guidelines:
 Classes should have no more than a dozen operations (methods)
 Classes should be no more than 500 lines long
 Operations should be no more than 50 lines long
 I have heard that you should be able to cover a method with your 

hand
 Of course, it is often impossible to follow these guidelines



 Each module should shield the internal details of its operation from other 
modules

 Declare variables with the smallest scope possible
 Use private (and protected) keywords in OOP languages to hide data 

(and even methods) from outside classes
 Advantages of information hiding:
 Modules that hide their internals can change them without affecting other things
 Modules that hide information are easier to understand, test, and reuse because they 

stand on their own
 Modules that hide information are more secure and less likely to be affected by outside 

errors
 This is why we use mutators and accessors instead of making members public



 Module coupling is the amount of connectivity between two modules
 Modules can be coupled in the following ways:
 One class is an ancestor of another class
 One class has a member whose type is another class
 One class has an operation (method) parameter whose type is another class
 One operation calls an operation on another class

 If there two modules have many of these couplings, we say that they are 
strongly coupled or tightly coupled

 When modules are strongly coupled, it's hard to use them independently 
and hard to change one without causing problems in the other

 Try to write classes to be as general as possible instead of tied to a specific 
problem or set of classes

 Using interfaces helps



 Module cohesion is how much the stuff in the module is 
related to the other stuff in the module

 We want everything in a class to be closely related
 It's best if a class keeps the smallest amount of information 

possible about other classes
 More module cohesion usually leads to looser module 

coupling
 Sometimes a module being hard to name suggests that its 

data or operations are not cohesive



 The design process is a microcosm of 
the larger software development 
process

 The steps are analyzing the problem, 
proposing solutions (and looking up 
existing solutions to similar problems), 
and evaluating the solutions (perhaps 
combining different solutions) until a 
design is selected

Analyze Design 
Problem

Design 
Problem

Generate and 
Improve Candidate 

Designs

Evaluate Candidate 
Designs

Select Design

Design 
Specification

Adequate

Inadequate

Finalize Design



 Architectural design is specifying a 
program's major components

 Architectural design is often modeled 
with a box-and-line diagram (also 
called a block diagram)
 Components are boxes
 Relationships or interactions between 

them are lines
 Unlike UML diagrams, box-and-line 

diagrams have no standards
 Draw them in a way that communicates 

your design



 Architectural styles are patterns that can be followed for 
architectures
 Model-view-controller
 Layered architecture
 Repository architecture
 Client-server architecture
 Pipe and filter architecture

 Architectural styles are the high-level analog of design patterns
 These styles can be used for parts of your design or combined into 

hybrid styles



 The Model-View-Controller (MVC) 
style fits many kinds of web or GUI 
interactions

 The model contains the data that is 
being represented, often in a database

 The view is how the data is displayed
 The controller is code that updates the 

model and selects which view to use
 The Java Swing GUI system is built 

around MVC
 Good: greater independence between 

data and how it's represented
 Bad: additional complexity for simple 

models



 Organize the system into layers
 Each layer provides services to layers 

above it, with the lowest layer being 
the most fundamental operations

 Layered styles work well when adding 
functionality on top of existing 
systems

 Good: entire layers can be replaced as 
long as the interfaces are the same

 Bad: it's hard to cleanly separate 
layers, and performance sometimes 
suffers



 If many components share a lot of data, a repository style might be appropriate
 Components interact by updating the repository
 This pattern is ideal when there is a lot of data stored for a long time
 Good: components can be independent
 Bad: the repository is a single point of failure



 Client-Server styles are used for distributed systems
 Each server provides a separate service, and clients access those services
 Good: work is distributed, and clients can access just what they need
 Bad: each service is a single point of failure, and performance might be 

unpredictable



 In the pipe and filter style, data is passed from one component to the next
 Each component transforms input into output
 Good: easy to understand, matches business applications, and allows for 

component reuse
 Bad: each component has to agree on formatting with its inputs and 

outputs



 Non-functional requirements usually relate to properties of the whole 
system

 They must be planned for at the architectural level
 Strategies for architecture designers meeting performance requirements:
 Use budgets: Each component is assigned a limit on time, space, or energy so 

that everything stays within the overall limit
 Choose appropriate styles: Layered architectures with a lot of layers can be 

slow
 Modify styles: Basic styles can be changed a little, for example, allowing a low-

level layer to talk directly to a high-level one
 Emphasize simplicity: Simple versions of components might be faster and use 

less memory than full-featured ones
 Minimize synchronous interactions: Synchronous interactions are ones where 

components have to wait for answers from other components



 Reliability is the probability that a product will behave as it should under 
normal conditions for a given period of time

 Like performance, it must be planned for at the architectural level
 Strategies for architecture designers meeting reliability requirements:
 Choose appropriate styles: For example, client-server is very reliable, as long as 

the server is reliable
 Modify styles: A client server model could add redundant servers
 Control component interactions: Interactions between components should 

only happen through explicit interfaces
 Handle exceptions: Plan how exceptions will be handled at the architectural 

level so that it's clear what parts of the system are responsible for recovering 
from which errors

 Monitor system health: Build in a component to check to see if other 
components have failed







 Detailed design
 Design patterns



 Keep reading Chapter 7: Software Engineering Design for 
Monday

 Keep working on the draft of Project 2
 Due Friday of next week


	COMP 3100
	Last time
	Questions?
	Design Principles
	SAC principles
	CAP principles
	FeVER principles
	Visual Design Tips
	Color
	Color terminology
	Colors and psychological impact
	Backgrounds
	Identity
	Slide Number 14
	Color tools
	Typefaces
	Two major classes of fonts
	Picking a font
	Typography for readability
	Pairing fonts
	Other font guidelines
	More design principles
	Alignment and proximity
	Balance
	Consistency and repetition
	Gestalt
	Golden ratio
	Software Engineering Design
	Software engineering design
	Preventing design defects
	Active review
	Design principles
	Simplicity
	Small modules
	Information hiding
	Minimize module coupling
	Maximize module cohesion
	Design process
	Architectural design
	Architectural styles
	Model-View-Controller
	Layered style
	Repository style
	Client-server architecture
	Pipe and filter style
	Performance goals
	Reliability goals
	Quiz
	Upcoming
	Next time…
	Reminders

