
Week 6 - Wednesday



 What did we talk about last time?
 User interaction design
 Swing







 Design principles favor certain characteristics to make a design better
 SAC principles are three general interaction design principles
 Simplicity
 Simple designs are better
 Lots of options are confusing for the user
 It's better to make commonly used options easy and require a little more work for 

unusual options
 Accessibility
 Designs that can be used be more people are better
 Considerations: color blindness, things too small to see or interact with

 Consistency
 Designs that present data in similar ways are better
 Example: use consistent navigation controls



 CAP principles are focused on appearance
 Contrast
 Designs that make different things obviously different are better
 Example: italics and bold
 Example: font size to distinguish headings from text

 Alignment
 Designs that line up on a grid are better
 Indentation is useful

 Proximity
 Designs that group related things together are better



 FeVER principles are about behavior
 Feedback
 Designs that acknowledge user actions are better
 Otherwise, how do you know if what you're doing has an effect?

 Visibility
 Designs that display their state and available operations are better
 Are we in Arm Bomb or Disarm Bomb mode?

 Error Prevention and Recovery
 Designs that prevent user errors and allow error recovery are better
 Prevention example: disable buttons that shouldn't be pressed
 Recovery example: allow undo or ask "Are you sure?" before doing something 

dangerous







 Artists divide colors into
 Primary: red, blue, yellow
 Secondary: mixes of primaries, orange, green, and purple
 Tertiary: combinations of primaries and secondaries

 Complementary colors are across from each other on the 
color wheel, with strong contrast

 Analogous colors are next to each other on the color wheel



 Warm colors like red, yellow, and orange are on one side of the fence
 Red has associations with strong archetypes, like hatred, passion, and fire
 Yellow is tied to happiness and sunshine

 Cool colors like green, blue, and purple are on the other
 Blue is cold and serene and trustworthy
 Green is associated with nature, the environment, healing, and money
 Purple is connected to royalty and femininity

 Neutral colors like gray and brown do not evoke much emotion
 Black can run the range from authority to death to mystery to elegance
 White can show purity, innocence, cleanliness, winter

 Colors evoke feelings in people, but there is so much variation



 A white background is the standard for readability
 Black backgrounds are often used to give a more 

exciting, youth-oriented, or "cool" feel
 Background colors are important since a single color 

can look different on different backgrounds



 Corporate branding is heavily tied to recognizable colors

 T-Mobile has even sued other companies for using magenta 
(unsuccessfully, it seems)



Graphic from Wired 
magazine 2003



 Google Lighthouse can check a website for contrast and other 
issues
 It's a tool built into Chrome

 Toptal is a website that lets you see what webpages look like 
for people with certain kinds of color blindness
 https://www.toptal.com/designers/colorfilter

https://www.toptal.com/designers/colorfilter




 Serif fonts have little pointy bits

F
 Sans serif fonts do not

F



 Make sure it is readable wherever it will display (books might 
be different from on screen)

 Read your content out loud in the font you pick to test 
readability

 Consider what audience you're trying to appeal to
 What is the setting where your text will appear?
 The process is subjective; there may not be a solution that 

pleases everyone



 Sans serif is usually considered more readable on screens
 Avoid ALL CAPS
 For headings, down style (capitalizing only the first word and 

proper nouns) is more readable than up style (capitalizing 
every major word)



 Using lots of fonts is amateurish and looks like a ransom note
 Using a single font is reasonable, especially for a webpage
 Some designers prefer to pair fonts, using two distinct fonts, 

often one for headings and the other for text
 An alternative is to use two very different weights of the same font

 The fonts should be different enough that they are not confused
 Ideally from different families

 Serif for headings and sans serif for body is a good stand by
 Sometimes the headings will be images of text rather than text



 Contrast is key
 Easy with black text on white background or vice versa
 If you are using colored fonts or backgrounds, how much contrast is there if you were to 

change to grayscale?
 Size
 Don't go too small!
 10pt or 12px is the smallest your fonts should be

 Hierarchy
 Use different fonts or weights or styles for title, heading, and body text
 Be consistent!

 Negative space is important
 Lets the eye rest
 Keeps the content from running together



 Alignment and proximity
 Balance
 Consistency and repetition
 Contrast and whitespace
 Gestalt
 Golden ratios



 All the images and text in your layout should follow some plan for 
alignment
 Horizontal
 Vertical
 Edges aligned
 Everything centered
 "Visual" alignment

 Unaligned items usually look sloppy
 It's possible to break alignment for a dramatic effect
 Items being close together suggests that they relate to each other



 Evenly distribute text and graphics
 Symmetrical balance divides things down the 

middle
 Asymmetrical balance leans to one side to create 

emphasis or interest
 Visual center is not always the center of the page

 In radial balance, elements radiate from the 
middle

 The rule of thirds suggests that a design can be 
made interesting by dividing the space into thirds 
such that important elements fall into only one of 
the three

Symmetrical

Asymmetrical

Radial



 Repetition is often a good thing in design
 Use the same styles and fonts consistently for top level 

headings, body text, quotes, etc.
 Use consistent layout for navigation bars and layout
 Page numbers or copyright notices should be in the same 

place on each page
 Repetition is comforting to readers
 They will often complain if there is any change, even if the new 

design is an improvement



 Gestalt is the idea that the whole is different than 
the sum of its parts

 Each individual part of a design can seem good on 
its own, but it might not fit together right

 Think about figure and ground
 Things that are incomplete are perceived as whole
 Many of the guidelines about grouping similar 

items together or making things with similar 
functions look similar come from gestalt 
psychology



 The golden ratio (or mean) is φ (phi), 
approximately 1.61803398874989 and even 
more approximately 5:3
 This value occurs in the closed-form solution of 

Fibonacci
 This ratio occurs in nature and is considered to 

look pleasing in art and design
 It comes from the relationship a + b:a as a:b
 This ratio is a good guideline for dividing up 

columns or organizing other layout





 Software engineering design is designing programs, sub-
systems, and their constituent parts

 Product design and interface design specifies the external 
features of a product

 Engineering design specifies the internal features
 Making it work

 When designing, it can be useful to make many different models 
showing different views of the system
 Class diagrams breaking the system into its parts
 State diagrams showing the states it can be in
 Diagrams showing hardware and software interactions



 A number of approaches can be used to avoid design defects
 Design principles: Using a list of good principles helps you 

make good choices
 Design notations: Using good notations (often UML 

diagrams) helps designs be complete and consistent
 Design processes: Using established processes for designs 

helps avoid mistakes
 Design patterns: Using patterns, models designed to be 

imitated, reuses solutions that have worked in the past (and 
make design easier)



 The previous slide was about preventing design defects
 To detect and remove design defects, an effective technique is 

active review
 In an active review, experts answer questions about parts of the 

design
 Active reviews have three phases:
 Preparation: Designers choose parts of the design they aren't happy with, 

choose experts to examine each part, and prepare questions for the 
experts

 Performance: Reviewers get the design and answer the questions
 Complete: Designers read the responses and update their design



 As with interface design, there are many software design principles that 
can help us evaluate the quality of a design

 Some important design principles are:
 Simplicity
 Small modules
 Information hiding
 Minimize module coupling
 Maximize module cohesion

 In this context, module means any meaningful program unit
 For OOP, classes or methods are usually considered modules
 The definition is intentionally vague to cover many different languages
 It does not mean Java modules (an organization level above packages in Java 9+)



 As with interface design, simpler designs are better
 What is simplicity?
 Fewer lines of code
 Fewer control structures
 Fewer connections between different parts
 Fewer computations with different kinds of objects

 A good rule of thumb is which design is easiest to understand
 Simplicity is a good goal, but some important algorithms in computer 

science are necessarily complex

Everything should be made as simple as possible, but not simpler.
-Attributed to Albert Einstein, who probably did not say it quite like that



 Designs with small modules are better
 Smaller modules are easier to read, to write, to understand, 

and to test
 Miscellaneous guidelines:
 Classes should have no more than a dozen operations (methods)
 Classes should be no more than 500 lines long
 Operations should be no more than 50 lines long
 I have heard that you should be able to cover a method with your 

hand
 Of course, it is often impossible to follow these guidelines



 Each module should shield the internal details of its operation from other 
modules

 Declare variables with the smallest scope possible
 Use private (and protected) keywords in OOP languages to hide data 

(and even methods) from outside classes
 Advantages of information hiding:
 Modules that hide their internals can change them without affecting other things
 Modules that hide information are easier to understand, test, and reuse because they 

stand on their own
 Modules that hide information are more secure and less likely to be affected by outside 

errors
 This is why we use mutators and accessors instead of making members public



 Module coupling is the amount of connectivity between two modules
 Modules can be coupled in the following ways:
 One class is an ancestor of another class
 One class has a member whose type is another class
 One class has an operation (method) parameter whose type is another class
 One operation calls an operation on another class

 If there two modules have many of these couplings, we say that they are 
strongly coupled or tightly coupled

 When modules are strongly coupled, it's hard to use them independently 
and hard to change one without causing problems in the other

 Try to write classes to be as general as possible instead of tied to a specific 
problem or set of classes

 Using interfaces helps



 Module cohesion is how much the stuff in the module is 
related to the other stuff in the module

 We want everything in a class to be closely related
 It's best if a class keeps the smallest amount of information 

possible about other classes
 More module cohesion usually leads to looser module 

coupling
 Sometimes a module being hard to name suggests that its 

data or operations are not cohesive



 The design process is a microcosm of 
the larger software development 
process

 The steps are analyzing the problem, 
proposing solutions (and looking up 
existing solutions to similar problems), 
and evaluating the solutions (perhaps 
combining different solutions) until a 
design is selected

Analyze Design 
Problem

Design 
Problem

Generate and 
Improve Candidate 

Designs

Evaluate Candidate 
Designs

Select Design

Design 
Specification

Adequate

Inadequate

Finalize Design



 Architectural design is specifying a 
program's major components

 Architectural design is often modeled 
with a box-and-line diagram (also 
called a block diagram)
 Components are boxes
 Relationships or interactions between 

them are lines
 Unlike UML diagrams, box-and-line 

diagrams have no standards
 Draw them in a way that communicates 

your design



 Architectural styles are patterns that can be followed for 
architectures
 Model-view-controller
 Layered architecture
 Repository architecture
 Client-server architecture
 Pipe and filter architecture

 Architectural styles are the high-level analog of design patterns
 These styles can be used for parts of your design or combined into 

hybrid styles



 The Model-View-Controller (MVC) 
style fits many kinds of web or GUI 
interactions

 The model contains the data that is 
being represented, often in a database

 The view is how the data is displayed
 The controller is code that updates the 

model and selects which view to use
 The Java Swing GUI system is built 

around MVC
 Good: greater independence between 

data and how it's represented
 Bad: additional complexity for simple 

models



 Organize the system into layers
 Each layer provides services to layers 

above it, with the lowest layer being 
the most fundamental operations

 Layered styles work well when adding 
functionality on top of existing 
systems

 Good: entire layers can be replaced as 
long as the interfaces are the same

 Bad: it's hard to cleanly separate 
layers, and performance sometimes 
suffers



 If many components share a lot of data, a repository style might be appropriate
 Components interact by updating the repository
 This pattern is ideal when there is a lot of data stored for a long time
 Good: components can be independent
 Bad: the repository is a single point of failure



 Client-Server styles are used for distributed systems
 Each server provides a separate service, and clients access those services
 Good: work is distributed, and clients can access just what they need
 Bad: each service is a single point of failure, and performance might be 

unpredictable



 In the pipe and filter style, data is passed from one component to the next
 Each component transforms input into output
 Good: easy to understand, matches business applications, and allows for 

component reuse
 Bad: each component has to agree on formatting with its inputs and 

outputs



 Non-functional requirements usually relate to properties of the whole 
system

 They must be planned for at the architectural level
 Strategies for architecture designers meeting performance requirements:
 Use budgets: Each component is assigned a limit on time, space, or energy so 

that everything stays within the overall limit
 Choose appropriate styles: Layered architectures with a lot of layers can be 

slow
 Modify styles: Basic styles can be changed a little, for example, allowing a low-

level layer to talk directly to a high-level one
 Emphasize simplicity: Simple versions of components might be faster and use 

less memory than full-featured ones
 Minimize synchronous interactions: Synchronous interactions are ones where 

components have to wait for answers from other components



 Reliability is the probability that a product will behave as it should under 
normal conditions for a given period of time

 Like performance, it must be planned for at the architectural level
 Strategies for architecture designers meeting reliability requirements:
 Choose appropriate styles: For example, client-server is very reliable, as long as 

the server is reliable
 Modify styles: A client server model could add redundant servers
 Control component interactions: Interactions between components should 

only happen through explicit interfaces
 Handle exceptions: Plan how exceptions will be handled at the architectural 

level so that it's clear what parts of the system are responsible for recovering 
from which errors

 Monitor system health: Build in a component to check to see if other 
components have failed







 Detailed design
 Design patterns



 Keep reading Chapter 7: Software Engineering Design for 
Monday

 Keep working on the draft of Project 2
 Due Friday of next week


	COMP 3100
	Last time
	Questions?
	Design Principles
	SAC principles
	CAP principles
	FeVER principles
	Visual Design Tips
	Color
	Color terminology
	Colors and psychological impact
	Backgrounds
	Identity
	Slide Number 14
	Color tools
	Typefaces
	Two major classes of fonts
	Picking a font
	Typography for readability
	Pairing fonts
	Other font guidelines
	More design principles
	Alignment and proximity
	Balance
	Consistency and repetition
	Gestalt
	Golden ratio
	Software Engineering Design
	Software engineering design
	Preventing design defects
	Active review
	Design principles
	Simplicity
	Small modules
	Information hiding
	Minimize module coupling
	Maximize module cohesion
	Design process
	Architectural design
	Architectural styles
	Model-View-Controller
	Layered style
	Repository style
	Client-server architecture
	Pipe and filter style
	Performance goals
	Reliability goals
	Quiz
	Upcoming
	Next time…
	Reminders

